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Simulating the electrocardiogram requires specifying the transmembrane potential distribution within the
heart and calculating the potential on the surface of the body. Often, such calculations are based on the
bidomain model of cardiac tissue. A subtle but fundamental problem arises when considering the boundary
between the cardiac tissue and the surrounding volume conductor. In general, one finds that two potentials—
the extracellular potential in the tissue and the potential in the surrounding bath—obey three boundary condi-
tions, implying that the potentials are overdetermined. In this paper, we derive a general method for handling
bidomain boundary conditions that eliminates this problem. The gist of the method is that we add an additional
term to the transmembrane potential that falls exponentially with depth into the tissue. The purpose of this term
is to satisfy the third boundary condition. Then, we take the limit as the length constant associated with this
extra term goes to zero. Our result is two boundary conditions that approximately account for the full set of
three boundary conditions at the tissue surface.
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I. INTRODUCTION

An important topic in bioelectric theory is the calculation
of the electrocardiogram �ECG� �1�. Often, such calculations
are based on the bidomain model �2�, a continuum model for
the electrical properties of cardiac tissue that accounts for the
anisotropy of both the intracellular space �inside the cardiac
cells� and extracellular space �in the interstitial space be-
tween the cardiac cells�. One way to approach this calcula-
tion is to specify the transmembrane potential distribution
�the voltage across the cell membrane� within the heart and
calculate the potential on the surface of the body. A subtle
but fundamental problem arises in this calculation when con-
sidering the boundary between cardiac tissue and the sur-
rounding volume conductor. In general, two potentials—the
extracellular potential in the tissue and the potential in the
surrounding bath—must obey three boundary conditions, im-
plying that the potentials are overdetermined. In this paper,
we derive an approximate method for handling the bidomain
boundary conditions that eliminates this problem. We then
compare our results to several previous calculations that used
the bidomain model �3–8�. Our methods and results are
analogous to a similar calculation we performed recently
when studying defibrillation �9�.

II. THE GENERAL PROBLEM

The bidomain equations governing the intracellular and
extracellular potentials, Vi and Ve, are

� · �g̃i � Vi� = Im, �1�

� · �g̃e � Ve� = − Im, �2�

where g̃i and g̃e are the intracellular �i� and extracellular �e�
conductivity tensors, and Im is the membrane current. The
quantities g̃i and g̃e are tensors because the electrical proper-
ties of cardiac tissue are anisotropic: they are different in the
direction parallel to the fibers �longitudinal, L� than in the

direction perpendicular to them �transverse, T�. So four pa-
rameters describe the electrical properties of the tissue: the
intracellular and extracellular conductivities in the longitudi-
nal and transverse directions: giL, giT, geL, and geT. If the
fiber direction changes throughout the tissue, the conductiv-
ity tensors also depend on the local fiber direction.

The bidomain equations are coupled, making them diffi-
cult to solve. Our goal is to uncouple them. Start with a
change of variables

Vm = Vi − Ve, � =
�

1 + �
�Vi +

1

�
Ve� , �3�

with the inverse transformation

Vi = � +
1

1 + �
Vm, Ve = � −

�

1 + �
Vm, �4�

where Vm is the transmembrane potential, � is an auxiliary
potential, and � is as yet unspecified. �The definition of � is
slightly different than in �10,11�, but is the same as in �9�.� If
we write the bidomain equations in terms of these new po-
tentials and then add Eqs. �1� and �2�, we find

� · �g̃i + g̃e� � � = −
1

1 + �
� · �g̃i − �g̃e� � Vm. �5�

In order to completely describe the bidomain problem, we
need to account for the surrounding bath, of conductivity gb,
and the tissue-bath boundary conditions. Assume that the
bath potential, Vb, obeys Laplace’s equation,

�2Vb = 0. �6�

�A minor generalization would allow us to describe an aniso-
tropic, inhomogeneous bath, but we will not consider that
case in this study.� At the tissue-bath boundary, the boundary
conditions are �i� the extracellular potential is equal to the
bath potential, �ii� the normal component of the extracellular
current density is equal to the normal component of the bath
current density, and �iii� the normal component of the intra-
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cellular current density is zero �12,13�. In almost all cases of
interest, the cardiac fibers at the tissue surface lie parallel to
the surface. We will assume that this is the case throughout
the rest of the analysis. Mathematically, we can write the
boundary conditions as

Ve = Vb, �7�

geT
�Ve

�n
= gb

�Vb

�n
, �8�

giT
�Vi

�n
= 0, �9�

where n is the direction perpendicular to the surface, going
into the tissue. Now we need to express these boundary con-
ditions in terms of the variables Vm and �. If we use Eq. �4�
and some algebra, the boundary conditions become

� −
�

1 + �
Vm = Vb, �10�

geT�1 + ��
��

�n
= gb

�Vb

�n
, �11�

�Vm

�n
= − �1 + ��

��

�n
. �12�

Finally, the outer edge of the bath has boundary conditions.
For instance, Vb may be specified on the boundary, the
boundary may be sealed ��Vb /�n=0�, or Vb may go to zero
far from the heart. The choice of boundary conditions de-
pends on the physical situation.

When calculating the ECG, Vm is the known source term,
and the goal is to calculate Ve �or, in our analysis, �� and Vb.
In this case, Eqs. �5� and �6� govern � and Vb, and Eqs.
�10�–�12� are the boundary conditions. Unfortunately, there
is a problem with this approach, and it is fundamental. The
three boundary conditions at the tissue-bath surface overde-
termine � and Vb. That is, Vm cannot be chosen arbitrarily if
we wish to fulfill all three boundary conditions. For example,
if Vm is taken as independent of depth into the tissue �inde-
pendent of n�, then the normal derivative of Vm in Eq. �12� is
zero, implying that the normal derivative of � is also zero,
which by Eq. �11� implies that the normal derivative of Vb is
zero. This means that no current passes from the tissue to the
bath, which does not make physical sense, and we conclude
that such a specification of Vm is not consistent with the
bidomain equations. To make further progress, we must
overcome this problem.

To keep the analysis simple, assume that the fibers lie
along the direction of one of the coordinate axes; for in-
stance, in the x direction in Cartesian coordinates, or in the �
direction in spherical coordinates. Furthermore, assume that
Vm corresponds to a wave front propagating either parallel to
or perpendicular to the fibers. Let � be the ratio of intracel-
lular to extracellular conductivities in the direction of propa-
gation. For instance, if propagation is along the fibers, �
=giL /geL. This definition of � ensures that the factor g̃i

−�g̃e on the right side of Eq. �5� is zero in the direction of
propagation. If we were considering a planar wave front, in
the sense that it propagates along the fibers but is uniform in
the direction perpendicular to the fibers, then the gradient of
Vm in the direction perpendicular to the fibers would be zero.
Therefore the entire right-hand side of Eq. �5� would vanish,
and � would obey

� · �g̃i + g̃e� � � = 0. �13�

However, the planar wave front assumption violates the
boundary conditions, as described earlier. It cannot be cor-
rect. We need to modify Vm so it has some variation perpen-
dicular to the direction of the fibers �and therefore perpen-
dicular to the surface�.

Let Vm be given by

Vm = V + Ae−n/�, �14�

where V represents a planar wave front �no variation perpen-
dicular to the surface�. V acts as our source term, which we
can specify as we wish. Ae−n/� is an additional term whose
sole purpose is to ensure the boundary conditions are not
violated �9�. We can think of � as being related to the elec-
trical length constant in the direction perpendicular to the
fibers, but for our purposes it need not be identical to this
length constant. A can vary in the plane of the surface, but is
not a function of depth.

The expression for Vm in Eq. �14� will contribute to the
right-hand side of Eq. �5�. Recall that the right-hand side is
zero in the direction parallel to the fibers because of the
definition of �. However, the additional term contributes to
the right-hand side in the direction perpendicular to the fi-
bers. In order to make the left-hand side of Eq. �5� equal to
the right-hand side, � must have a similar additional term.
Specifically, we write � as the sum of �0, the solution to the
homogeneous equation �Eq. �13��, and an additional expo-
nential term

� = �0 + Be−n/�. �15�

If we plug Eqs. �14� and �15� into Eq. �5� and only consider
derivatives perpendicular to the tissue surface, we find that A
and B are related by

B = −
1

1 + �

giT − �geT

giT + geT
A . �16�

Finally, we can substitute Eqs. �14� and �15� into the bound-
ary conditions in Eqs. �10�–�12� and simplify. We find

A =
giT + geT

geT
�

��0

�n
, �17�

B = −
giT − �geT

geT�1 + ��
�

��0

�n
, �18�

and two boundary conditions for � and Vb.
Now we make another assumption. Let the variation of

the potentials in the plane of the surface be small compared
to the variation in depth. In other words, assume � is small
compared to the distance over which � and Vm vary in the
plane of the surface. This assumption would not be valid if
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we were concerned with local, high spatial frequency effects,
such as changes in the rate of rise of Vm at the tissue surface
�6�. However, when analyzing the ECG we are often con-
cerned with only the low spatial frequencies that contribute
to the bath potential far from the heart. In the limit as � goes
to zero, A and B vanish and the two boundary conditions
become �for notational simplicity, we drop the subscript from
� and let gT=giT+geT�

−
�

1 + �
V + � = Vb, �19�

gT
��

�n
= gb

�Vb

�n
. �20�

This completes our approximate formulation of the bidomain
problem. � is the solution to the homogeneous problem, Eq.
�13�, and Vb is the solution to Laplace’s equation, Eq. �6�.
The boundary conditions are given by Eqs. �19� and �20�. V
is the planar wave front source term. The additional terms in
Eqs. �14� and �15� allow us to enforce all the boundary con-
ditions. Even though we ultimately take the limit as � goes to
zero, these extra terms still influence the solution. Now that
we have this approximate formulation of the bidomain cal-
culation, let us consider some simple examples.

III. EXAMPLE 1: TWO-DIMENSIONAL TISSUE ANALYSIS

As an example, consider a slab of tissue in the region z
�0, which is perfused by a bath �z�0�. Assume a planar
wave front propagates in the x direction �parallel to the fi-
bers�, and let this wave front be independent of y �Fig. 1�.
This problem was first examined by Plonsey and Barr �4�.
Equations �6� and �13� become

�2Vb

�x2 +
�2Vb

�z2 = 0, �21�

�giL + geL�
�2�

�x2 + �giT + geT�
�2�

�z2 = 0. �22�

Let V vary sinusoidally in the x direction, with spatial fre-
quency k. This is not really a restriction, since we can view

this potential as one component of a Fourier expansion. The
solutions to Eqs. �21� and �22� are

Vb�x,z� = Ce−kz sin kx , �23�

��x,z� = De�gL/gTkz sin kx , �24�

where gL=giL+geL. If we substitute Eqs. �23� and �24� into
the boundary conditions in Eqs. �19� and �20�, we get

C = −
�

1 + �
V

1

1 +
gb

�gTgL

, �25�

D =
�

1 + �
V

1

1 +
�gTgL

gb

. �26�

If the bath conductivity goes to zero, C approaches −�� / �1
+���V and D goes to zero.

Johnston et al. �8� have solved a similar problem using
different boundary conditions. Let us examine the difference
between our method of determining C and D and theirs.
Johnston et al. use two boundary conditions, one of which is
Eq. �19� and the other one is equivalent to

geT
��

�n
= gb

�Vb

�n
. �27�

Moreover, they do not use the assumption given by Eq. �14�,
but instead assume Vm is independent of depth, Vm�x�
=V sin kx �that is, A=B=0�. As we said earlier, this set of
boundary conditions is not self-consistent, and it is instruc-
tive to examine what result their method gives. If we plug
the expressions given in Eqs. �23� and �24� into Eqs. �19� and
�27�, and solve for C and D, we get

C = −
�

1 + �
V

1

1 +
gT

geT

gb

�gTgL

, �28�

D =
�

1 + �
V

1

1 +
geT

gT

�gTgL

gb

. �29�

The expression for C, which determines the bath potential, is
different in Eqs. �25� and �28� by a factor of gT /geT in the
denominator. If we use the conductivity values consistent
with those given in �14�—giL=0.2 S/m, geL=0.2 S/m, giT
=0.02 S/m, and geT=0.08 S/m—and a bath conductivity of
gb=1 S/m, we find that Johnston et al.’s value of C is about
17% smaller than ours. This difference may be significant in
precise quantitative measurements, but is probably not im-
portant for qualitative analysis, of the ECG.

IV. EXAMPLE 2: PLANAR SLAB MODEL

In a minor generalization of the previous model, Hen-
riquez et al. �5� examined a slab of cardiac tissue of thick-

FIG. 1. A planar wave front propagating along a half-infinite
block of cardiac tissue, perfused by a bath of conductivity go. The
gray lines indicate the fiber direction. The shaded tissue represents
the action potential.
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ness 2a, with an action potential propagating in the z direc-
tion, independent of x, with y being the direction
perpendicular to the tissue surface �the coordinate directions
are labeled slightly differently here than in the previous ex-
ample, to stay consistent with �5�� �Fig. 2�. The relationships
among Vb�y ,z�, ��y ,z�, and Vm�z� are most conveniently
expressed in terms of Fourier transforms. For example, the

Fourier transform of the potential V�z�, designated V̂�k�, is
defined by

V̂�k� = �
−�

�

V�z�e+ikzdz , �30�

with the inverse relation being

V�z� =
1

2	
�

−�

�

V̂�k�e−ikzdk . �31�

The variable k represents a spatial frequency.
We can solve Eqs. �6� and �13� with boundary conditions

�19� and �20�, and find that �̂�y ,k� and V̂b�y ,k�, the Fourier
transforms of ��y ,z� and Vb�y ,z�, can be written in terms of

V̂�k� as

�̂�
,k� =
�

1 + �

cosh�k�y�
cosh�k�a���	k	,a,��

V̂�k� , �32�

Vb
ˆ �
,k� =

�

1 + �

e−ky

e−ka��	k	,a,��
V̂�k� , �33�

where the functions ��	k	 ,a ,��, ��	k	 ,a ,��, and �	k	 ,a ,��
are defined as

��	k	,a,�� = − �1 + �	k	,a,��� , �34�

��	k	,a,�� = 1 +
1

�	k	,a,��
, �35�

�	k	,a,�� =
gb

�gLgT

1

tanh�k�a�
, �36�

and �=�gL /gT. These results are equivalent to those derived
by Henriquez et al. �5�, who assumed equal anisotropy ratios
in their derivation. They are not, however, equivalent to the
results obtained if one assumes that the intracellular, rather
than the transmembrane, potential is independent of depth
�6�.

V. EXAMPLE 3: A CYLINDRICAL FIBER

One limitation of the two previous examples was that the
tissue was unbounded in the direction perpendicular to
propagation. In that case, we cannot examine how the poten-
tial depends on the cross-sectional area of the wave front,
because it is infinite. We can remove this limitation by con-
sidering propagation along a cylindrical fiber �Fig. 3�. We
represent the tissue as a cylinder of radius a and describe it
with cylindrical coordinates �
 ,� ,z�. The fibers lie along the
z axis, and the cylindrical symmetry ensures that the poten-
tial is independent of the angle �. Again, the relationships
among Vb�
 ,z�, ��
 ,z�, and V�z� are expressed in terms of
Fourier transforms.

We can solve Eqs. �6� and �13� with boundary conditions

�19� and �20�, and find that �̂�
 ,k� and V̂b�
 ,k�, the Fourier
transforms of ��
 ,z� and Vb�
 ,z�, can be written in terms of

V̂�k� as

�̂�
,k� =
�

1 + �

I0�	k	�
�
I0�	k	�a���	k	,a,��

V̂�k� , �37�

V̂b�
,k� =
�

1 + �

K0�	k	
�
K0�	k	a���	k	,a,��

V̂�k� , �38�

where the functions ��	k	 ,a ,��, ��	k	 ,a ,��, and �	k	 ,a ,��
are defined as

��	k	,a,�� = − �1 + �	k	,a,��� �39�

��	k	,a,�� = 1 +
1

�	k	,a,��
�40�

FIG. 2. A planar wave front propagating along a slab of cardiac
tissue, of thickness a, perfused on both sides �y�a /2, y�−a /2� by
a bath of conductivity go. The gray lines indicate the fiber direction.
The shaded tissue represents the action potential.

FIG. 3. A planar wave front propagating along a cylinder of
cardiac tissue, of radius a, perfused by a bath of conductivity go.
The gray lines indicate the fiber direction. The shaded tissue repre-
sents the action potential.
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�	k	,a,�� =
gbI0�	k	�a�K1�	k	a�

�gLgTI1�	k	�a�K0�	k	a�
, �41�

and �=�gL /gT. These results are equivalent to those derived
by Roth and Wikswo �3�, who assumed Vm was independent
of depth, did not enforce the boundary condition in Eq. �9�,
and replaced the boundary condition in Eq. �8� with

giT
�Vi

�n
+ geT

�Ve

�n
= gb

�Vb

�n
. �42�

VI. EXAMPLE 4: THE SPHERICAL HEART

Li et al. �7� represented the heart as a spherical shell of
cardiac tissue. Their model consists of cardiac tissue sur-
rounding a blood cavity and surrounded by a conducting bath
�Fig. 4�. The inner and outer radii of the shell are b and a,

and the conductivity of the blood and bath are gb and go. The
fibers are in the � direction, and azimuthal symmetry implies
that the potential is independent of the angle �. In spherical
coordinates �r ,� ,��, Eq. �13� for � is

gT
1

r

�2

�r2 �r�� + gL
1

r2

1

sin �

�

��
�sin �

��

��
� = 0, �43�

and Vo and Vb obey Laplace’s equation. We assume that the
source term in the transmembrane potential depends only on
�, and write it as an expansion in Legendre polynomials

V��� = 

l=0

�

VlPl�cos �� . �44�

If V��� has the form V���=Vo for ���o and V���=0 for �
��o, then V0=Vo�cos �o−1� /2 and Vl=Vo�Pl+1�cos �o�
− Pl−1�cos �o�� /2 for l�1 �7�. In particular, the l=1 term
reduces to V1= �3/4�sin2 �o.

The general solutions for the potentials are �15�

� = 

l=0

�

�Clr
�1 + Dlr

�2�Pl�cos �� , �45�

Vb = 

l=0

�

Blr
lPl�cos �� , �46�

Vo = 

l=0

�
Al

rl+1 Pl�cos �� , �47�

where

�1,2 = −
1

2
±�l�l + 1�

gL

gT
+

1

4
. �48�

We determine constants Al, Bl, Cl, and Dl by applying the
boundary conditions −�� / �1+���V+�=Vb and gT��� /�r�
=gb��Vb /�r� at r=b and −�� / �1+���V+�=Vo and
gT��� /�r�=go��Vo /�r� at r=a, and obtain

Al = −
�a

b
��1+�2

��2 − �1� + �1�a

b
��1

− �2�a

b
��2

+
gT�1�2

gbl
��a

b
��2

− �a

b
��1�

�a

b
��1�1 −

gT

gb

�2

l
��1 +

gT

go

�1

l + 1
� − �a

b
��2�1 −

gT

gb

�1

l
��1 +

gT

go

�2

l + 1
�

gT

go�l + 1�
al+1 �

1 + �
Vl, �49�

Bl =

�1 − �2 − �1�a

b
��2

+ �2�a

b
��1

+
gT�1�2

go�l + 1���a

b
��1

− �a

b
��2�

�a

b
��1�1 −

gT

gb

�2

l
��1 +

gT

go

�1

l + 1
� − �a

b
��2�1 −

gT

gb

�1

l
��1 +

gT

go

�2

l + 1
�

gT

gbl

1

bl

�

1 + �
Vl, �50�

FIG. 4. A planar wave front propagating through a spherical
shell of cardiac tissue of inner radius b and outer radius a. The shell
is surrounded by a bath of conductivity go, and encloses blood of
conductivity gb. The gray circles indicate the fiber direction. The
shaded tissue represents the action potential.
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Cl =
�1 −

gT

gb

�2

l
� − �a

b
��2�1 +

gT

go

�2

l + 1
�

�a

b
��1�1 −

gT

gb

�2

l
��1 +

gT

go

�1

l + 1
� − �a

b
��2�1 −

gT

gb

�1

l
��1 +

gT

go

�2

l + 1
�

1

b�1

�

1 + �
Vl, �51�

Dl =
�a

b
��1�1 +

gT

go

�1

l + 1
� − �1 −

gT

gb

�1

l
�

�a

b
��1�1 −

gT

gb

�2

l
��1 +

gT

go

�1

l + 1
� − �a

b
��2�1 −

gT

gb

�1

l
��1 +

gT

go

�2

l + 1
�

1

b�2

�

1 + �
Vl. �52�

For the ECG problem, we are most concerned about Al for small values of l. For l=0, Al=0, so there is no monopole
contribution to the bath potential. For l=1, the bath potential has the form of a dipole

Vo�r,�� =
p cos �

4	gor2 , �53�

where the dipole moment p is given by

p =
3

2
	a2gTVo sin2 �o

�

1 + �− �a

b
��1+�2

��2 − �1� − �1�a

b
��1

+ �2�a

b
��2

−
gT�1�2

gb
��a

b
��2

− �a

b
��1�

�a

b
��1�1 −

gT

gb
�2��1 +

gT

go

�1

2
� − �a

b
��2�1 −

gT

gb
�1��1 +

gT

go

�2

2
� � . �54�

This result indicates how the bath potential depends
on parameters such as a, b, go, and gb. It is a generali-
zation of the Li et al. �7� result because it allows the tissue
to be anisotropic, and it is not limited to the case when
go=0.

VII. DISCUSSION

The ECG forward problem can be formulated as shown in
Fig. 5: Eqs. �6� and �13�, with boundary conditions in Eqs.

�19� and �20�. This formulation ensures that all three bound-
ary conditions �Eqs. �7�–�9�� are satisfied. It is an approxi-
mate method and is based on the assumption that additional
terms added to Vm and � have an exponential form, and their
length constant is small compared to other distances. In some
cases, our formulation gives results that are consistent with
those obtained previously �3,5�, and in other cases the results
are different �6–8�. Our results are similar to those we found
previously when considering electrical stimulation and
defibrillation �9�.

We analyzed the case when the tissue surrounding the
heart is isotropic, homogeneous, and unbounded, but extend-
ing the analysis to remove this limitation would be straight-
forward. Also, we considered only planar wave fronts propa-
gating parallel to the fiber direction, and simple fiber
geometries. We can generalize the method to arbitrary wave
fronts and fiber geometries if we replace Eq. �13� for � by
Eq. �5�. Our analysis of the proper boundary conditions at
the heart surface should be valuable as researchers use the
bidomain model to study more realistic heart and torso ge-
ometries �16,17�, and phenomena such as ST segment shift
during ischemia �18–20�.
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FIG. 5. A schematic diagram of the boundary value problem for
� and Vb. The function V is the known transmembrane potential
source term. The gray curves indicate the fiber direction. If V de-
pends on the direction perpendicular to the fibers, then the equation
for � in the tissue should be replaced by Eq. �5�.
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